Abstract

Metal–oxide–semiconductor structures consisting of HfSiOx as the gate dielectric were characterized by using monoenergetic positron beams. 200-nm-thick polycrystalline-Si (poly-Si) and 5-nm HfSiOx films were grown on Si substrates by chemical vapor deposition. Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons were measured as a function of incident positron energy for ion-implanted and unimplanted samples. For the unimplanted sample after rapid thermal annealing (RTA: 1030°C, 10 s), the lifetime of positrons in the HfSiOx film was 448±2 ps. Since the obtained lifetime was longer than the lifetime of positrons trapped by point defects in metal oxides, the positrons in HfSiOx films were considered to annihilate from the trapped state by open spaces which exist intrinsically in their amorphous structure. After P+, As+ and BF2+-implantation into the poly-Si film and RTA, the lifetime of positrons was 420–430 ps. This decrease in the lifetime was attributed to the shrinkage of the open spaces in the HfSiOx film due to the accumulation of implanted impurities in the film during RTA. The diffusion length of positrons in Si substrates was found to depend on the implanted species of ions. This fact was attributed to the electric field introduced by charged defects in the HfSiOx films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call