Abstract

The classical mesh independence principle (MIP) describes a desirable property for Newton's method, its main feature being that the discrete iterations exhibit the same quadratic convergence behavior for any mesh size, i.e., uniformly as the mesh is refined. We study the latter property for a general class of second order nonlinear elliptic boundary value problems solved by finite element discretization. For this, a more specific principle, the mesh independence principle for quadratic convergence (MIPQC), is introduced. It is proved that the MIPQC holds if and only if the elliptic equation is semilinear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.