Abstract

Many bacteria perform extracellular electron transfer (EET), whereby electrons are transferred from the cell to an extracellular terminal electron acceptor. This electron acceptor can be an electrode and electrons can be delivered indirectly via a redox-active mediator molecule. Here, we present a protocol to study mediated EET in Lactiplantibacillus plantarum, a probiotic lactic acid bacterium widely used in the food industry, using a bioelectrochemical system. We detail how to assemble a three-electrode, two-chambered bioelectrochemical system and provide guidance on characterizing EET in the presence of a soluble mediator using chronoamperometry and cyclic voltammetry techniques. We use representative data from 1,4-dihydroxy-2-naphthoic acid (DHNA)-mediated EET experiments with L. plantarum to demonstrate data analysis and interpretation. The techniques described in this protocol can open new opportunities for electro-fermentation and bioelectrocatalysis. Recent applications of this electrochemical technique with L. plantarum demonstrated an acceleration of metabolic flux towards producing fermentation end-products, which are critical flavor components in food fermentation. As such, this system has the potential to be further developed to alter flavors in food production or produce valuable chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.