Abstract

Test cavities to characterize superconductor samples are of great interest for the development of materials suitable for superconducting radio frequency (SRF) accelerator systems. They can be used to investigate fundamental SRF loss mechanisms and to study the material limitations for accelerator applications. Worldwide, this research is based on only few systems that differ in operating frequency, sample size and shape, and the accessible parameter space of frequency, temperature, and RF field strength. For useful performance predictions in future accelerators, it is important that the operating parameter range is close to that employed in accelerating systems. Since 2014, the Helmholtz-Zentrum Berlin has operated such a system built around a redesigned Quadrupole Resonator (QPR). It is based on a system originally developed at CERN. Important new design modifications were developed, along with new measurement techniques and insight into their limitations. In the meantime, an increasing number of laboratories are adopting the QPR for their measurement campaigns. This paper provides a comprehensive overview of the state-of-the-art, the wide spectrum of measurement capabilities, and a detailed analysis of measurement uncertainties, as well as the limitations one should be aware of to maximize the effectiveness of the system. In the process, we provide examples of measurements performed with Nb3Sn and bulk niobium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.