Abstract

Abstract Sensor-based sorting is a well-established single particle separation technology. It has found wide application as a quality assurance and control approach in food processing, mining, and recycling. In order to assure high sorting quality, a high degree of control of the motion of individual particles contained in the material stream is required. Several system designs, which are tailored to a sorting task at hand, exist. However, the suitability of a design for a sorting task is assessed by empirical observation. The required thorough experimentation is very time consuming and labor intensive. In this paper, we propose an instrumented bulk material particle for the characterization of motion behavior of the material stream in sensor-based sorting systems. We present a hardware setup including a 9-axis absolute orientation sensor that is used for data acquisition on an experimental sorting system. The presented results show that further processing of this data yields meaningful features of the motion behavior. As an example, we acquire and process data from an experimental sorting system consisting of several submodules such as vibrating conveyor channels and a chute. It is shown that the data can be used to train a model which enables predicting the submodule of a sorting system from which an unknown data sample originates. To our best knowledge, this is the first time that this IIoT-based approach has been applied for the characterization of material flow properties in sensor-based sorting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.