Abstract
When a dielectric material undergoes mechanical impact, it generates a shock wave, causing changes in its refractive index. Recent demonstrations have proven that the modified refractive index can be determined remotely using a millimeter-wave interferometer. However, these demonstrations are based on the resolution of an inverse electromagnetic problem, which assumes that the losses in the material are negligible. This restrictive assumption is overcome in this article, in which a new approach is proposed to solve the inverse electromagnetic problem in lossy and shocked dielectric materials. Our methodology combines a one-dimensional convolutional neural network architecture, namely Inverse problem of Lossless or Lossy Shocked Wavefront Network (ILSW-Net), with a nonlinear optimization technique based on the Nelder–Mead algorithm to estimate losses within dielectric materials under a mechanical impact. Experimental results for both simulated and real signals show that our method can successfully predict the velocities and the refractive index while accurately estimating the shock wavefront.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.