Abstract

Load transfer efficiency from matrix to carbon nanotubes (CNTs) plays an important role in the mechanical response of CNTs nanocomposites as it may affect the effectiveness of the nano-reinforcements. For double-walled carbon nanotubes (DWCNTs), the outer graphene layer as well as the inner layer may be responsible for the load bearing capacity. In this study, the load transfer efficiency within DWCNTs was investigated using a multiscale simulation scheme. The multiscale simulation consists of two steps. First, the atomistic behaviors between the adjacent graphite layers in DWCNTs were characterized using molecular dynamic (MD) simulation, from which a cylindrical equivalent continuum solid of DWCNTs with embedded spring elements was proposed to describe the interactions of neighboring graphene layers. Two kinds of interatomistic properties in DWCNTs, i.e., van der Walls (vdW) interactions and artificial build-up covalent bonds, were considered in the equivalent solid. Subsequently, the equivalent solid was implemented as reinforcement in the micromechanical model of CNTs nanocomposites for evaluating the load transfer efficiency. Results indicated that the DWCNTs with covalent bonds exhibit superior load transfer efficiency than those with only vdW interactions. In addition, when the DWCNTs get long, the load transfer efficiency of DWCNTs increases accordingly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.