Abstract
Live fuel moisture content (LFMC) influences many fire-related aspects, including flammability, ignition, and combustion. In addition, fire spread models are highly sensitive to LFMC values. Despite its importance, LFMC estimation is still elusive due to its dependence on plant species traits, local conditions, and weather patterns. Although LFMC mapping from active synthetic aperture radar has increased over the past years, their utility for LFMC estimation needs further analysis to include additional areas characterized by different vegetation species and fire regimes. This study extended the current knowledge using medium spatial resolution (20 m) time series acquired by active (Sentinel-1) and passive (Sentinel-2) sensors. Our results show that optical-based LFMC estimation may achieve acceptable accuracy (R2 = 0.55, MAE = 15.1%, RMSE = 19.7%) at moderate (20 m) spatial resolution. When ancillary information (e.g., vegetation cover) was added, LFMC estimation improved (R2 = 0.63, MAE = 13.4%). Contrary to other studies, incorporating Sentinel-1 radar data did not provide for improved LFMC estimates, while the use of SAR data alone resulted in increased estimation errors (R2 = 0.28, MAE = 19%, RMSE = 25%). For increased fire risk scenarios (LFMC < 120%), estimation errors improved (MAE = 9.1%, RMSE = 11.8%), suggesting that direct LFMC retrieval from satellite data may be achieved with high temporal and spatial detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.