Abstract

The geomechanical characterization of volcanic material has important implications for geothermal and mineral exploration, engineering design, geophysical signals of volcano unrest, and models of instability and mass flows. Chemical weathering and hydrothermal systems can alter the host rock, leading to changes in mechanical behavior and failure mode. Here, we compare the physical and mechanical properties of lava, autoclastic breccia, and pyroclastic (scoria) rocks from Mount Ruapehu volcano (Ruapehu) in New Zealand to mineralogical composition determined via infrared spectroscopy and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). We use correlation matrices, principal component analysis, and parametric analysis to determine which parameters can be used to predict physical and mechanical properties and form the basis for transfer functions. Laboratory-based spectroscopy shows that the samples contain absorption features indicative of Al- and Mg-rich hydrous phyllosilicates (e.g., kaolinite, halloysite, montmorillonite), Fe- oxides (e.g., goethite), and sulfates attributed to surface weathering, supergene, and steam-heated alteration. We find that porosity and primary lithology are the predominant control on physical and mechanical properties, followed by the pervasiveness of weathering/alteration, and then mineralogical composition. Several properties, such as porosity, uniaxial compressive strength, P-wave seismic velocity, density, and Young’s modulus, show strong correlations with other properties, indicating the potential for transfer functions between these properties. Hydrothermally altered rocks near the vent complex (up to ~ 400 m depth beneath the crater lake) with high-intensity hydrothermal alteration do not follow typical physical and mechanical property trends due to high clay content, low permeability, and low strength. The presence of these rocks within the edifice at Ruapehu implies local barriers to fluid flow and subsequent pore pressure variations. Additionally, they may have less than half the strength than would be dictated by typical porosity-strength trends for surface rocks, increasing the likelihood of structural failure. Trends in the pervasiveness of weathering with physical and mechanical properties, along with shifts in the position of spectral absorption peaks as hydrothermal/weathering alteration increases, suggest that it may be possible to extrapolate properties from imaging spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call