Abstract
Quaternions, particularly the double and dual forms, are important for the representation rotations and more general rigid-body motions. The Cayley factorization allows a real orthogonal 4 × 4 matrix to be expressed as the product of two isoclinic matrices and this is a key part of the underlying theory and a useful tool in applications. An isoclinic matrix is defined in terms of its representation of a rotation in four-dimensional space. This paper looks at characterizing such a matrix as the sum of a skew symmetric matrix and a scalar multiple of the identity whose product with its own transpose is diagonal. This removes the need to deal with its geometric properties and provides a means for showing the existence of the Cayley factorization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.