Abstract

Infectious disease management relies on accurate characterization of disease progression so that transmission can be prevented. Slowly progressing infectious diseases can be difficult to characterize because of a latency period between the time an individual is infected and when they show clinical signs of disease. The introduction of Mycobacterium avium ssp. paratuberculosis (MAP), the cause of Johne’s disease, onto a dairy farm could be undetected by farmers for years before any animal shows clinical signs of disease. In this time period infected animals may shed thousands of colony forming units. Parameterizing trajectories through disease states from infection to clinical disease can help farmers to develop control programs based on targeting individual disease state, potentially reducing both transmission and production losses due to disease. We suspect that there are two distinct progression pathways; one where animals progress to a high-shedding disease state, and another where animals maintain a low-level of shedding without clinical disease. We fit continuous-time hidden Markov models to multi-year longitudinal fecal sampling data from three US dairy farms, and estimated model parameters using a modified Baum-Welch expectation maximization algorithm. Using posterior decoding, we observed two distinct shedding patterns: cows that had observations associated with a high-shedding disease state, and cows that did not. This model framework can be employed prospectively to determine which cows are likely to progress to clinical disease and may be applied to characterize disease progression of other slowly progressing infectious diseases.

Highlights

  • Like tuberculosis in humans and animals, HIV/AIDS in humans, and Johne’s disease in cattle, are difficult to characterize because they are often associated with a latency period between the time an individual is infected and when they show clinical signs or symptoms of disease

  • Fecal samples were taken from all adult animals on three northeastern farms between 2004 and 2009 biannually, totaling 6530 samples from 1714 cows as part of the Regional Dairy Quality Alliance Management (RDQMA) program [15]

  • The addition of state transition probabilities from our model can improve the accuracy of predicted progression patterns in mathematical models, and the addition of emission probability estimates to simulation models can more accurately model disease transmission dynamics

Read more

Summary

Introduction

Like tuberculosis in humans and animals, HIV/AIDS in humans, and Johne’s disease in cattle, are difficult to characterize because they are often associated with a latency period between the time an individual is infected and when they show clinical signs or symptoms of disease. The funders had no role in the study design, data collection, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call