Abstract
Automated vehicles are expected to influence human drivers’ behavior. Accordingly, capturing such changes is critical for planning and operation purposes. With regard to car-following behavior, a key question is whether existing car-following models can replicate these changes in human behavior. Using a data set that was collected from the car-following behavior of human drivers when following automated vehicles, this paper offers a robust methodology based on the concept of dynamic time warping to investigate the critical parameters that can be used to capture changes in human behavior. The results indicate that spacing can best substantiate such changes. Moreover, calibration and validation of the intelligent driver model (IDM) suggest its inability to capture changes in human behavior in response to automated vehicles. Thus, an extension of the IDM that explicitly models stochasticity in the behavior of individual drivers is applied, and the results show such a model can identify a reduction in uncertainty when following an automated vehicle. This finding also has implications for a stochastic extension to other models when analyzing and simulating a mixed-autonomy traffic flow environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.