Abstract

Enormous interest exists to develop the next generation of an integrated microsystem for chemical and biological analysis (μChemLab™) and to further reduce the volume of the system. One approach is to scale down the size of critical components and to explore any pumping mechanism that can minimize the power requirement. Since the majority of the pumping requirement is to overcome the wall resistance in the gas chromatography (GC) column, our attention is to study the gas flow in this GC column. As the column dimension decreases, the gaseous flow will go from a continuum regime into a non-continuum regime; i.e., slip, transition, and free molecular regimes. Thus it is very important to well characterize the gaseous flow in submicron columns and to understand its flow behavior. Specifically, in this study, our focus is to investigate the effects of viscosity, rarefaction, and compressibility as the column dimension decreases. Both theoretical predictions and experimental results will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call