Abstract

The rediscovery of carbon nanotubes (Iijima, 1991) has inspired extensive research activity. These materials have extremely high surface areas, large aspect ratios, remarkably high mechanical strength, and can have electrical and thermal conductivities that are similar to that of copper (Ebbesen et al., 1996). They come in two forms: single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs). SWNTs have diameters ranging from 1.2 to 1.4 nm. MWNTs have larger overall diameters, with sizes depending on the number of concentric walls within the structure. Like graphite, carbon nanotubes are relatively non-reactive, except at the nanotube caps which are more reactive due to the presence of dangling bonds. The reactivity of the carbon nanotube side walls’ -system can also be influenced by tube curvature or chirality (Okpalugo et al., 2005). In particular, their remarkable structure-dependent properties have attracted great attention due to their potential applications in heterogeneous catalysis (Planeix et al., 1994), use as substrates for destruction of cancer cells (Kam et al., 2005) and applications for biological and chemical sensing (Poh et al., 2004). Carbon nanotubes require chemical modification in aqueous solution environments to make them more amenable for attachment of reactive surface species. In the case of attaching metal nanoparticles to the carbon surface, functionalization is necessary to avoid agglomeration of the metal. Sensor applications involve the tethering of chemical moieties with specific recognition sites for the detecting ultra-trace analytes (Dai, 2002). Surface functionalization is also necessary for depositing high-loading, catalytically active metal nanoparticles on them (Xing et al, 2005). Great attention has been paid to attaching functional groups onto carbon nanotube surfaces (Holzinger et al., 2001; Kim et al., 2004; Chen et al., 2005; Park et al., 2006) and probing the electronic structure resulting from post-nanotube-synthesis preparations. To understand the changes that result from surface functionalization strategies, well-defined characterization of the carbon nanotube’s surface chemistry and structure is needed. The ability to get an accurate detailed picture of the tethered functional groups that attach to the solid surface using aqueous solution preparation methods is important for controlling carbon nanotube surface composition composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call