Abstract

Alcohol intake alters brain balance, affecting its structure and function, and it may cause Alcohol Use Disorders (AUDs). We aimed to study the effects of chronic, excessive alcohol consumption on the brain from a functional and structural point of view, via analysis of multimodal magnetic resonance (MR) images. We conducted three studies with specific aims: i) To understand how the neuroadaptations triggered by alcohol intake are reflected in between-network resting-state functional connectivity (rs-FC) and brain activity in the onset of alcohol dependence, we performed studies in msP rats in control and alcohol conditions. Group probabilistic independent component analysis (group-PICA) and spatial regression were applied to resting-state functional magnetic resonance imaging (rs-fMRI) images to obtain subject-specific time courses of seven resting-state networks (RSNs). Then, we estimated rs-FC via L2-regularized partial correlation. We performed a manganese-enhanced (MEMRI) experiment as a readout of neuronal activity. In alcohol condition, we found hypoconnectivities between the visual network (VN), and striatal (StrN) and sensory-cortex (SCN) networks, all with increased brain activity. On the contrary, hyperconnectivities were found between three pairs of RSNs: 1) medial prefrontal-cingulate (mPRN) and StrN, 2) SCN and parietal association (PAN) and 3) motor-retrosplenial (MRN) and SCN networks, being PAN the only network without brain activity rise. Interestingly, the hypoconnectivities could be explained as control to alcohol transitions from direct to indirect connectivity, whereas the hyperconnectivities reflected an indirect to an even more indirect connection. These findings indicate that RSNs are early altered by prolonged and moderate alcohol exposure, diminishing the executive control and behavioral flexibility. ii) To compare cortical gray matter (GM) volume between 34 healthy controls and 35 alcohol-dependent patients who were detoxified and remained abstinent for 1-5 weeks before MRI acquisition, we performed a voxel-based morphometry analysis. The main structures whose GM volume decreased in abstinent subjects compared to controls were precentral gyrus (PreCG), postcentral gyrus (PostCG), supplementary motor cortex (SMC), middle frontal gyrus (MFG), precuneus (PCUN) and superior parietal lobule (SPL). Decreases in GM volume in these areas may lead to changes in control of movement (PreCG and SMC), in processing tactile and proprioceptive information (PostCG), personality, insight, prevision (MFG), sensory appreciation, language understanding, orientation (PCUN) and the recognition of objects by touch and shapes (SPL). iii) To characterize dynamic brain states in functional MRI (fMRI) signals by means of an approach based on the Hidden Markov model (HMM). Several parameter configurations of HMM-Gaussian in a block-design paradigm were considered, together with different time series: independent components (ICs) and probabilistic functional modes (PFMs) on 14 healthy subjects. The block-design fMRI paradigm consisted of four experimental conditions: rest, visual, motor and visual-motor. Characterizing brain states' dynamics in fMRI data was possible applying the HMM-Gaussian approach to PFMs, with mean activity driving the states. The four spatial maps obtained were named HMM-rest, HMM-visual, HMM-motor and HMM-DMN (default mode network). HMM-DMN appeared once a task state had stabilized. The ultimate goal will be to obtain brain states in our rs-fMRI rat data, to dynamically compare the behavior of brain RSNs as a biomarker of AUD. In conclusion, neuroimaging techniques to estimate rs-FC, brain activity and GM volume can be successfully applied to multimodal MRI in the advance of the understanding of brain homeostasis in AUDs. These functional and structural alterations are a biomarker of chronic alcoholism to explain impairments in executive control, reward evaluation and visuospatial processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call