Abstract

As global climate change and human activities increasingly influence our world, forest fires have become more frequent, inflicting significant damage to ecosystems. This study conducted measurements of combustible materials (moisture content ratio, ignition point, and calorific value) across 14 representative sites. We employed Pearson correlation analysis to ascertain the significant differences in combustible properties and utilized entropy methods to evaluate the fire resistance of materials at these sites. Cluster analysis led to the development of four combustible models. Using BehavePlus software, we simulated their fire behaviors and investigated the effects of wind speed and slope on these behaviors through sensitivity analysis. The results revealed notable differences in the moisture content ratios among different types of combustibles, especially in sites 2, 3, 8, 9, and 13, indicating higher fire risks. It was also found that while humus has a higher ignition point and lower calorific value, making it less prone to ignite, the resultant fires could be highly damaging. The Pearson analysis underscored significant variations in the moisture content ratios among different combustibles, while the differences in ignition points and calorific values were not significant. Sites 5 and 6 demonstrated stronger fire resistance. The simulations indicated that fire-spread speed, fireline intensity, and flame length correlate with, and increase with, wind speed and slope. Sensitivity analysis confirmed the significant influence of these two environmental factors on fire behavior. This study provides critical insights into forest fire behavior, enhancing the capability to predict and manage forest fires. Our findings offer theoretical support for forest fire prediction and a scientific basis for fire management decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call