Abstract

To prevent the illegal discharge of metal plating wastewater (MPW), it is necessary to explore a monitoring method that could achieve the identification of MPW in natural water bodies. Fluorescence excitation-emission matrix-parallel factor (EEM-PARAFAC) analysis might be a promising tool for the detection of MPW. However, before conducting the practical monitoring, the apparent fluorescence features of different kinds of MPW must be first understood. In this study, six types of MPW (576 samples) from ten metal plating plants were collected and their fluorescence fingerprints (FFs) were characterized by EEM-PARAFAC analysis. Results showed that pretreatment wastewater (PTW), copper-contained electroplating wastewater (Cu-EPW), nickel-contained electroplating wastewater (Ni-EPW), copper-contained electroless wastewater (Cu-ELW), nickel-contained electroless wastewater (Ni-ELW), and metal plating effluent (MPE) presented one, three, one, one, two, and three types of FFs, respectively. Among them, three individual fluorescent components were identified in Ni-EPW and two were decomposed in other kinds of MPW. Owing to the discrepancies of production processes, electroplating additives, wastewater treatment techniques, and management levels, different metal plating plants owned different FFs. By spectral comparison, the tyrosine-like components in PTW and Ni-ELW might derived from some phenolic and benzenesulfonic acidic compounds. Fluorescent component similarity analysis indicated that EEM-PARAFAC technique could distinguish the raw and treated MPW. This study not only constructed the first FF database for MPW, but also provided valuable guidance for their practical monitoring in aquatic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.