Abstract

PurposeThe purpose of this study was to characterize the benign biological variance of fixational microsaccades in a control population using a tracking scanning laser ophthalmoscope (TSLO), accounting for machine accuracy and precision, to determine ideal testing conditions to detect pathologic change in fixational eye motion (FEM).MethodsWe quantified the accuracy and precision of the TSLO, analyzing measurements made by three operators on a model eye. Repeated, 10-second retinal motion traces were then recorded in 17 controls, 3 times a day (morning, afternoon, and evening), on 3 separate days. Microsaccade metrics (MMs) of frequency, average amplitude, peak velocity, and peak acceleration were extracted. Trace to trace, interday, and intraday variability were calculated across all subjects.ResultsIntra-operator and machine variation contributed minimally to total variation, with only 0.007% and 0.14% contribution for frequency and amplitude respectively. Bias was detected, with lower accuracy for higher amplitudes. Participants had an average (SD) microsaccade frequency of 0.84 Hz (0.52 Hz), amplitude of 0.32 degrees (0.11 degrees), peak velocity of 43.68 degrees/s (14.02 degrees/s), and peak acceleration of 13,920.04 degrees/s2 (4,186.84 degrees/s2). The first trace recorded within a session significantly differed from the second two in both microsaccade acceleration and velocity (P < 0.05), and frequency was 0.098 Hz higher in the evenings (P < 0.05). There was no MM difference between days and no evidence of a session-level learning effect (P > 0.05).ConclusionsThe TSLO is both accurate and precise. However, biological inter- and intra-individual variance is present. Trace to trace variability and time of day should be accounted for to optimize detection of pathologic change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.