Abstract

Understanding the origin of fast radio bursts (FRB's) is a central unsolved problem in astrophysics that is severely hampered by their poorly determined distance scale. Determining the redshift distribution of FRB's appears to require arcsecond angular resolution, in order to associate FRB's with host galaxies. In this paper, we forecast prospects for determining the redshift distribution without host galaxy associations, by cross-correlating FRB's with a galaxy catalog such as the SDSS photometric sample. The forecasts are extremely promising: a survey such as CHIME/FRB that measures catalogs of $\sim 10^3$ FRB's with few-arcminute angular resolution can place strong constraints on the FRB redshift distribution, by measuring the cross-correlation as a function of galaxy redshift $z$ and FRB dispersion measure $D$. In addition, propagation effects from free electron inhomogeneities modulate the observed FRB number density, either by shifting FRB's between dispersion measure (DM) bins or through DM-dependent selection effects. We show that these propagation effects, coupled with the spatial clustering between galaxies and free electrons, can produce FRB-galaxy correlations which are comparable to the intrinsic clustering signal. Such effects can be disentangled based on their angular and $(z, D)$ dependence, providing an opportunity to study not only FRB's but the clustering of free electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.