Abstract
An open neighbourhood locating-dominating set is a set S of vertices of a graph G such that each vertex of G has a neighbour in S, and for any two vertices u,v of G, there is at least one vertex in S that is a neighbour of exactly one of u and v. We characterize those graphs whose only open neighbourhood locating-dominating set is the whole set of vertices. More precisely, we prove that these graphs are exactly the graphs for which all connected components are half-graphs (a half-graph is a special bipartite graph with both parts of the same size, where each part can be ordered so that the open neighbourhoods of consecutive vertices differ by exactly one vertex). This corrects a wrong characterization from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.