Abstract
Unsupervised feature selection is a critical step for efficient and accurate analysis of single-cell RNA-seq data. Previous benchmarks used two different criteria to compare feature selection methods: (i) proportion of ground-truth marker genes included in the selected features and (ii) accuracy of cell clustering using ground-truth cell types. Here, we systematically compare the performance of 11 feature selection methods for both criteria. We first demonstrate the discordance between these criteria and suggest using the latter. We then compare the distribution of selected genes in their means between feature selection methods. We show that lowly expressed genes exhibit seriously high coefficients of variation and are mostly excluded by high-performance methods. In particular, high-deviation- and high-expression-based methods outperform the widely used in Seurat package in clustering cells and data visualization. We further show they also enable a clear separation of the same cell type from different tissues as well as accurate estimation of cell trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.