Abstract
We completely classify the possible divergence functions for right-angled Coxeter groups (RACGs). In particular, we show that the divergence of any such group is either polynomial, exponential, or infinite. We prove that a RACG is strongly thick of order k $k$ if and only if its divergence function is a polynomial of degree k + 1 $k+1$ . Moreover, we show that the exact divergence function of a RACG can easily be computed from its defining graph by an invariant we call the hypergraph index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.