Abstract
PurposeMethods and techniques of aggregating preferences or priorities in the analytic hierarchy process (AHP) usually ignore variation or dispersion among experts and are vulnerable to extreme values (generated by particular viewpoints or experts trying to distort the final ranking). The purpose of this paper is to propose a modelling approach and a graphical representation to characterize inconsistency and disagreement in the group decision making in the AHP.Design/methodology/approachThe authors apply a regression approach for estimating the decision weights of the AHP using linear mixed models (LMM). They also test the linear mixed model and the multi‐dimensional scaling graphical display using a case of strategic performance management in education.FindingsIn addition to determining the weight vectors, this model also allows the authors to decompose the variation or uncertainty in experts' judgment. Well‐known statistical theories can estimate and rigorously test disagreement among experts, the residual uncertainty due to rounding errors in AHP scale, and the inconsistency within individual experts' judgments. Other than characterizing different sources of uncertainty, this model allows the authors to rigorously test other factors that might significantly affect weight assessments.Originality/valueThis study provides a model to better characterize different sources of uncertainty. This approach can improve decision quality by allowing analysts to view the aggregated judgments in a proper context and pinpoint the uncertain component that significantly affects decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.