Abstract

Reported in this article are initial results from of a longitudinal study to characterize the design cognition and cognitive design styles of high school students with and without pre-engineering course experience over a 2-year period, and to compare them with undergraduate engineering students. The research followed a verbal protocol analysis based on the function– behavior–structure (FBS) ontology, which employs a task-independent approach that is distinct from a task-based or an ad hoc approach. This approach to protocol analysis is applicable across any process-based view of designing and generates results based on a common comparative measure independent of the design task. In this article, Year 1 results are presented comparing only students in their junior year of high school who had formal pre-engineering course experience (experiment group) with those who did not have formal pre-engineering course experience (control group). Specifically, data collected from design sessions were analyzed for comparison of design issues and processes between experiment and control groups, respectively. Results from analysis of Year 1 data did not reveal any significant differences between the experiment and control groups in engineering design cognition. Based on these results, one would conclude that students with pre-engineering course experience do not demonstrate a stronger focus on the process of producing design solutions than do students without such experience. Although analysis of demographic data from high school participants indicates some degree of common prior preengineering experiences, it did not provide a sufficient explanation for why no significant differences in engineering design thinking were found between these groups. The researchers anticipate that Year 2 data will indicate that as the preengineering students continue engaging in formal engineering design experiences during their final year of high school, some degree of difference in design cognition will be demonstrated.

Highlights

  • Engineering design used as an instructional strategy at the PK–12 level is increasingly being embraced as a core learning method and as a pedagogical tool for integrative STEM education (Kolodner, 2002, Wells, 2010)

  • Analysis of Year 1 data did not reveal any significant differences between the experiment (ENG) and control (NON) groups in engineering design cognition

  • To further investigate this apparent lack of difference between ENG and NON groups, the following select demographic data related to prior technology and engineering (T/E) design experiences were collected: participation in (a) middle school technology education classes, (b) T/E clubs, (c) other T/E-related activities, and because of the rural school settings, (d) farm-related activities

Read more

Summary

Introduction

Engineering design used as an instructional strategy at the PK–12 level is increasingly being embraced as a core learning method and as a pedagogical tool for integrative STEM education (Kolodner, 2002, Wells, 2010). Though few would argue that the design literature in engineering education has been somewhat singularly focused on pedagogical issues, there is a growing body of literature from studies that seek to understand the characteristics of design thinking behavior from a cognitive viewpoint (Cross, 2004; Lawson, 2004) Among these studies, protocol analysis is the research method of choice (Atman & Bursic, 1998; Dorst & Cross, 2001) for investigating design cognition and has been the basis for many of the more recent design cognition studies (Adams, Turns, & Atman, 2003; Atman et al, 2007; Christensen & Schunn, 2007). The FBS protocol analysis addresses the underlying cognitive processes, as opposed to the standard behavior-based analysis, and provides a uniform basis for comparisons between students with different educational preparation and backgrounds and from different educational environments (Jiang, Gero, &Yen, 2014; Williams, Gero, Lee, & Paretti, 2011)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call