Abstract
Containerization technologies provide a mechanism to encapsulate applications and many of their dependencies, facilitating software portability and reproducibility on HPC systems. However, in order to access many of the architectural features that enable HPC system performance, compatibility between certain components of the container and host is required, resulting in a trade-off between portability and performance. In this work, we discuss our experiences running three state-of-the-art containerization technologies on five leading petascale systems. We present how we build the containers to ensure performance and security and their performance at scale. We ran microbenchmarks at a scale of 6,144 nodes containing 0.35 M MPI processes and baseline the performance of container technologies. We establish the near-native performance and minimal memory overheads by the containerized environments using MILC - a lattice quantum chromodynamics code at 139,968 processes and using VPIC - a 3d electromagnetic relativistic Vector Particle-In-Cell code for modeling kinetic plasmas at 32,768 processes. We demonstrate an on-par performance trend at a large scale on Intel, AMD, and three NVIDIA architectures for both HPC applications.KeywordsPetascaleHPCContainerizationCloud computingSingularityCharliecloudPodmanMILCVPIC
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.