Abstract

G protein-coupled receptors (GPCRs) play a pivotal role in signal transduction and represent attractive targets for drug development. Recent advances in structural biology have provided insights into GPCR conformational states, which are critical for understanding their signaling pathways and facilitating structure-based drug discovery. In this study, we introduce a machine learning approach for conformational state annotation of GPCRs. We represent GPCR conformations as high-dimensional feature vectors, incorporating information about amino acid residue pairs involved in the activation pathway. Using a dataset of GPCR conformations in inactive and active states obtained through molecular dynamics simulations, we trained machine learning models to distinguish between inactive-like and active-like conformations. The developed model provides interpretable predictions and can be used for the large-scale analysis of molecular dynamics trajectories of GPCRs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.