Abstract
Genetic studies of non-traditional glycemic biomarkers, glycated albumin and fructosamine, can shed light on unknown aspects of type 2 diabetes genetics and biology. We performed a multi-phenotype GWAS of glycated albumin and fructosamine from 7,395 White and 2,016 Black participants in the Atherosclerosis Risk in Communities (ARIC) study on common variants from genotyped/imputed data. We discovered 2 genome-wide significant loci, one mapping to known type 2 diabetes gene (ARAP1/STARD10) and another mapping to a novel region (UGT1A complex of genes) using multi-omics gene-mapping strategies in diabetes-relevant tissues. We identified additional loci that were ancestry- and sex-specific (e.g., PRKCA in African ancestry, FCGRT in European ancestry, TEX29 in males). Further, we implemented multi-phenotype gene-burden tests on whole-exome sequence data from 6,590 White and 2,309 Black ARIC participants. Ten variant sets annotated to genes across different variant aggregation strategies were exome-wide significant only in multi-ancestry analysis, of which CD1D, EGFL7/AGPAT2 and MIR126 had notable enrichment of rare predicted loss of function variants in African ancestry despite smaller sample sizes. Overall, 8 out of 14 discovered loci and genes were implicated to influence these biomarkers via glycemic pathways, and most of them were not previously implicated in studies of type 2 diabetes. This study illustrates improved locus discovery and potential effector gene discovery by leveraging joint patterns of related biomarkers across the entire allele frequency spectrum in multi-ancestry analysis. Future investigation of the loci and genes potentially acting through glycemic pathways may help us better understand risk of developing type 2 diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.