Abstract

Previously a third-order polynomial equation characterizing mechano-electric transduction was obtained from a nonlinear system identification procedure applied to an ear canal acoustic signal and cochlear microphonic (CM/AC). In this paper, we examine the influence of the linearity and frequency response of the intervening middle ear on the nonlinearity, frequency response, and coherence of the third-order polynomial model of mechano-electric transduction (MET). Ear canal sound pressure (AC), cochlear microphonics (CM), and stapes velocity (SV) were simultaneously recorded from Mongolian gerbils. Linear and nonlinear transfer and coherence functions relating stapes velocity to the acoustic signal (SV/AC), CM to the acoustic signal (CM/AC), and CM to the stapes velocity (CM/SV) were computed. The results showed that SV/AC was linear while CM/AC and CM/SV were not, indicating that the nonlinearity of CM/AC was not due to nonlinearity of the middle ear. The frequency response of the linear term of CM/AC was similar to that of ST/AC but differed from that of CM/SV while the cubic term of CM/AC was similar to that of CM/SV. This indicates that the frequency dependence of CM/AC was due to both the middle ear and frequency dependence of the inner ear. Finally the fit of the polynomial model of MET without the middle ear (CM/SV) did not improve from the fit including the middle ear (CM/AC). A cochlear model of the CM indicated that the lack of improvement was due to the limitations of a third-order polynomial equation characterizing the hair cell transducer function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.