Abstract
We report the matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) characterization of the cryptocyanin proteins of the juvenile Chionoecetes opilio crabs during their molting and non-molting phases. In order to assess the structural cryptocyanin protein differences between the molting and non-molting phases, the obtained peptides were sequenced by MALDI low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS). The cryptocyanin protein was isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by MALDI-TOF/TOF-MS. The purified cryptocyanin protein was sequenced, using the 'bottom-up' approach. After tryptic digestion, the peptide mixture was analyzed by MALDI-QqTOF-MS/MS and the data obtained were used for the peptide mass fingerprinting (PMF) identification by means of the Mascot database. It was demonstrated using MALDI-TOF/TOF-MS that the actual molecular weights of the non-molting and molting cryptocyanin proteins were different; these were, respectively, 67.6 kDa and 68.1 kDa. Using low-energy CID-MS/MS we have sequenced the trytic peptides to monitor the differences and similarities between the cryptocyanin molecular structures during the molting and non-molting stages. We have demonstrated for the first time that the actual molecular masses of the cryptocyanin protein during the molting and non-molting phases were different. The MALDI-CID-MS/MS analyses allowed the sequencing of the cryptocyanins after tryptic digestion, during the molting and non-molting stages, and showed some similarities and staggering differences between the identified cryptocyanin peptides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.