Abstract
Evaluation of the global warming potential of the dairy industry both in China and globally necessitates reliable characterization of CH4 and N2O emissions. However, CH4 and N2O emissions from dairy operations differ with feeds, herd structures and manure management practices, and the lack of N2O and CH4 emission measurements for China, especially for intensive dairy operations, causes substantial uncertainty in accounting for GHGs from dairy operation both in China and globally. In this study, CH4 and N2O emissions during summer to fall period from an intensive feedlot in China were characterized to fill the data gap. The diurnal CH4 emission patterns for milking cows and heifers were driven by the feeding activities and the diurnal N2O patterns by the diurnal changes in temperature. The CH4 emission rates of 397 g head−1 d−1 (23.63 L CH4 kg−1 milk) (in summer) and 279 g head−1 d−1 (in fall) for milking cows and heifers accounted for 5.17% and 7.68% of their daily gross energy intakes, whereas the N2O emission rates of 36.7 g head−1 d−1 (0.85 L N2O kg−1 milk) for milking cows and 24.2 g head−1 d−1 for heifers accounted for 4.25% and 6.86% of the daily feed N intake. The CH4 conversion factor and CH4 emission intensity in the measurement season for intensive dairy operations in China are lower than those for collective operations in China, and the CH4 emission intensity is similar to those in developed countries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.