Abstract

Imidazolium functionality has played a prominent role in research on anion exchange membranes for use in alkaline electrochemical devices. Base stability and degradation of these materials has been much studied, but in many instances, product pathways have not been thoroughly delineated. We report an NMR study of base-induced decomposition products from three benzylimidazolium salts bearing varying extents of methyl substitution on the imidazolium ring. The major products are consistent with a hydrolytic ring fragmentation pathway as the principal mode of decomposition. We observe several new products not previously reported in the literature on imidazolium salt degradation, including benzilic acid rearrangement products formally derived from intermediate 1,2-dicarbonyl compounds or their equivalents. However, the overall reactions are complex, the yields of observed products do not account for all consumed starting materials, and mechanistic ambiguities remain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call