Abstract

In this paper, we study bearing equivalence in directed graphs. We first give a strengthened definition of bearing equivalence based on the kernel equivalence relationship between bearing rigidity matrix and bearing Laplacian matrix. We then present several conditions to characterize bearing equivalence for both directed acyclic and cyclic graphs. These conditions involve the spectrum and null space of the associated bearing Laplacian matrix for a directed bearing formation. For directed acyclic graphs, all eigenvalues of the associated bearing Laplacian are real and nonnegative, while for directed graphs containing cycles, the bearing Laplacian can have eigenvalues with negative real parts. Several examples of bearing equivalent and bearing non-equivalent formations are given to illustrate these conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.