Abstract

SummaryShale, which has pores as small as 10 nm, is economically viable for hydrocarbon recovery when it is fractured. Although the fracture toughness dictates the required energy for the improvement, the existing techniques are not suitable for characterization at scales smaller than 1 cm. Developing practical methods for characterization is crucial because fractures can contribute to an accessible pore volume at different scales. This study proposes a conceptual model to characterize the anisotropic fracture toughness of shale using nanoindentations on a sub-1-cm scale. The conceptual model reveals the complexities of characterizing shales and explains why induced fractures differ from those observed in more-homogeneous media, such as fused silica. Samples from the Wolfcamp Formation were tested using Berkovich and cube-corner tips, and the interpreted fracture toughness values are promising. The conceptual model is the first application of the effective-medium theory for fracture toughness characterization using nanoindentation. In addition, it can quantify fracture toughness variations when using small samples, such as drill cuttings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.