Abstract
Software engineering researchers have studied specific types of issues such reopened bugs, performance bugs, dormant bugs, etc. However, one special type of severe bugs is blocking bugs. Blocking bugs are software bugs that prevent other bugs from being fixed. These bugs may increase maintenance costs, reduce overall quality and delay the release of the software systems. In this paper, we study blocking bugs in eight open source projects and propose a model to predict them early on. We extract 14 different factors (from the bug repositories) that are made available within 24 hours after the initial submission of the bug reports. Then, we build decision trees to predict whether a bug will be a blocking bugs or not. Our results show that our prediction models achieve F-measures of 21%–54%, which is a two-fold improvement over the baseline predictors. We also analyze the fixes of these blocking bugs to understand their negative impact. We find that fixing blocking bugs requires more lines of code to be touched compared to non-blocking bugs. In addition, our file-level analysis shows that files affected by blocking bugs are more negatively impacted in terms of cohesion, coupling complexity and size than files affected by non-blocking bugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.