Abstract

AbstractUsing a newly developed plastic strain measurement technique based on digital image correlation, surface plastic deformation of polycrystalline aluminum alloys in a thin sheet form has been experimentally characterized at a length scale comparable to that of the thickness of the aluminum sheets but much larger than the average size of individual grains. Both static and dynamic local straining patterns in these aluminum alloys have been observed and these strain patterns can not be simulated using the conventional plasticity models. The texture clustering of grains may contribute to the static local plastic strain patterns detected in an Al-Mg alloy. Two distinctive dynamic straining behaviors resulted from the dynamic strain aging of dislocations due to the alloying elements have been experimentally established for 5XXX and 6XXX alloys, respectively. First observation of dynamic strain inhomogeneity is also made in a sheet metal specimen deforming predominately in a plane strain state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.