Abstract

Intel Software Guard Extensions (SGX) is a set of extensions built into Intel CPUs for the trusted computation. It creates a hardware-assisted secure container, within which programs are protected from data leakage and data manipulations by privileged software and hypervisors. With the trend that more and more machine learning based programs are moving to cloud computing, SGX can be used in cloud-based Machine Learning applications to protect user data from malicious privileged programs.However, applications running in SGX suffer from several overheads, including frequent context switching, memory page encryption/decryption, and memory page swapping, which significantly degrade the execution efficiency. In this paper, we aim to i) comprehensively explore the execution of general AI applications running on SGX, ii) systematically characterize the data reuses at both page granularity and cacheline granularity, and iii) provide optimization insights for efficient deployment of machine learning based applications on SGX. To the best of our knowledge, our work is the first to study machine learning applications on SGX and explore the potential of data reuses to reduce the runtime overheads in SGX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.