Abstract
Model microbial communities are regularly used to test ecological and evolutionary theory as they are easy to manipulate and have fast generation times, allowing for large-scale, high-throughput experiments. A key assumption for most model microbial communities is that they stably coexist, but this is rarely tested experimentally. Here we report the (dis)assembly of a five-species microbial community from a metacommunity of soil microbes that can be used for future experiments. Using reciprocal invasion-from-rare experiments we show that all species can coexist and we demonstrate that the community is stable for a long time (~600 generations). Crucially for future work, we show that each species can be identified by their plate morphologies, even after >1 year in co-culture. We characterise pairwise species interactions and produce high-quality reference genomes for each species. This stable five-species community can be used to test key questions in microbial ecology and evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.