Abstract

The aim of this work was to characterize the dosimetric properties of the PTW microDiamond (60019) single crystal synthetic diamond detector (DD) in kilovoltage x-ray beams. The following characteristics were addressed in this study: required preirradiation dose, dose-rate linearity, energy dependence, and percent depth dose response of the DD. UWADCL x-ray beams, characterized by NIST-traceable ionization chambers, were used in this study. Preirradiation dose required by the DD, in order to stabilize the detector's response to within 0.1%, was quantitated. Dose-rate dependence was also investigated using the UW250-M and UW50-M beams, where the dose rate was varied by changing the tube current. and calibration coefficients for all the available M series beams at UWADCL were obtained to determine the energy dependence of the DD, Diode E, Diode P, and P11 parallel-plate ionization chamber. A custom-built water tank was utilized to measure the percent depth dose (PDD) response of the DD, Diode E, Diode P, and P11 chamber in UW250-M, UW100-M, and UW50-M beams. The measured PDD response of the detectors was compared with the simulated PDD data using EGSnrc Monte Carlo code. A 1.5Gy dose-to-water or air-kerma was found to be sufficient for the given DD's response to stabilize to within 0.1% in all of the beams used in this study. The dose-rate dependence parameter, Δ, was found to be 1.00±0.02 and 1.016±0.05 for the UW250-M and UW50-M beams, respectively. Relative to the Co calibration coefficients, the DD was found to under-respond relative to calculated absorbed dose to water response and over-respond relative to the calculated air-kerma response in the M-series beams. Agreement of 1.5% was found between the measured PDD values and Monte Carlo simulated PDD values for UW250-M, UW100-M, and UW50-M beams. In order to stabilize the response, the DD needs a preirradiation dose, which is unique to every DD. A linear relationship between detector response and dose rate was found within the evaluated uncertainty. An energy dependence of the DD was studied, which is more pronounced in the low-energy beams and can be partially attributed to the metal contact material around the sensitive volume of the DD. Overall, the DD was found to be suitable for kilovoltage x-ray dosimetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call