Abstract
Herein, we report the assembly behavior of triptycenes with aldehyde (Trip-1) and amino (Trip-2) groups on pristine and iodine-passivated Au(111) surfaces by a combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and density functional theory (DFT) calculation. On Au(111) surface, Trip-1 forms long trimer chains and two-dimensional islands via aldehyde-aldehyde hydrogen bonding in one dimension and π-π stacking of adjacent benzene rings in the other dimension. In contrast, Trip-2 lies as individuals or in disorderly stacked islands. Trip-2 and Trip-1 can be mixed in an arbitrary ratio. And Trip-2 molecules disrupt the ordered self-assembly structure of Trip-1 due to the formation of stronger aldehyde-amino hydrogen bonding. DFT, XPS, and Raman spectra confirm the conformational difference of Trip-1 and -2, as well as the aldehyde-amino hydrogen bonding formation in Trip-1 and Trip-2 mixture. On the iodine-passivated Au(111) surface, Trip-1 forms single-molecule chains and a hexagonal closely packed structure due to iodine interlayer mediation. Trip-2 molecules disrupt the hexagonal closely packed structure of Trip-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.