Abstract

In this study we have characterized, in brain, the expression of a plasma membrane proteolipid protein (PM-PLP) complex that can form cation-selective channels in lipid bilayers. We isolated PLP fractions from synaptic plasma membrane and glial microsomes and found a high degree of similarity in both size and amino acid composition to the complex we had previously isolated from kidney. Antibodies specific to the kidney PM-PLP were prepared, and, on the basis of immunoblot and immunoprecipitation studies, the PM-PLP complex isolated from neural membranes was shown to be immunologically related to the kidney PM-PLP. These proteolipid proteins exhibited a molecular weight of approximately 14K and contained a high percentage of hydrophobic amino acids with an apparent absence of cysteine. The biogenesis of PM-PLP in brain was studied by in vitro translation of free and bound polysomes and total RNA in a rabbit reticulocyte lysate followed by immunoprecipitation of the translation products. From these studies it is concluded that the PM-PLP complex is synthesized on the rough endoplasmic reticulum. On the basis of the identical electrophoretic mobility of material isolated from plasma membranes and material immunoprecipitated after translation of bound polysomes and isolated RNA, it appears that the PM-PLP does not undergo detectable posttranslational processing between its site of synthesis and its incorporation into the plasma membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call