Abstract

In this paper we first give characterizations of the class of continuous t-norms on L I (where L I is the lattice of closed subintervals of the unit interval) which satisfy the residuation principle and which are a natural extension of a t-norm on the unit interval and which satisfy one of the following conditions: the negation generated by their residual implication is involutive; they are (weakly) Archimedean; they are (weakly) nilpotent. We fully characterize the class of continuous t-norms on L I which satisfy the residuation principle, which are a natural extension of a t-norm on the unit interval and which are weakly Archimedean. We construct a separate representation for the t-norms in this class which are weakly nilpotent and for those which are not weakly nilpotent. Finally we give a characterization of the continuous t-norms on L I which satisfy the residuation principle, which are a natural extension of a t-norm on the unit interval and which are strict.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.