Abstract
We consider the closed orientable hypersurfaces in a wide class of warped product manifolds, which include space forms, deSitter-Schwarzschild and Reissner-Nordström manifolds. By using an integral formula or Brendle’s Heintze-Karcher type inequality, we present some new characterizations of umbilic hypersurfaces. These results can be viewed as generalizations of the classical Jellet-Liebmann theorem and the Alexandrov theorem in Euclidean space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.