Abstract

A Fullzone (FZ) impeller was used in the first study of the characteristics involved in the fermentation of Aspergillus oryzae. Both the experimental and simulation results of this study revealed novel findings into the positive relationship between the global-axial mixing patterns of a FZ impeller and fermentation efficiency. The mixing results when using the FZ impeller compared with a double Rushton turbine (DRT) impeller indicated that the culture mixed by the FZ resulted in a more homogeneous medium with higher values for oxygen mass transfer, cell growth rate, and alpha amylase activity. The simulation of fluid flow was done in a laminar regime using a two-fluid model. According to the simulation results, the maximum shear stress when using the DRT was higher than that with the FZ at the same power input (Pin). A high degree of local shear stress and the shear rate near the turbine blade of the DRT resulted in cell damage and a reduction in the enzyme activity, biomass, pellet diameter, and dissolved oxygen concentration. Calculations using the Brown equation showed that the maximum and average shear rates during mixing with the FZ impeller were lower than that when using the DRT. Therefore, the use of an FZ impeller, particularly at low Pin, enhanced the cultivation of A.oryzae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call