Abstract

In this paper, we first derive several characterizations of the nonemptiness and compactness for the solution set of a convex scalar set-valued optimization problem (with or without cone constraints) in which the decision space is finite-dimensional. The characterizations are expressed in terms of the coercivity of some scalar set-valued maps and the well-posedness of the set-valued optimization problem, respectively. Then we investigate characterizations of the nonemptiness and compactness for the weakly efficient solution set of a convex vector set-valued optimization problem (with or without cone constraints) in which the objective space is a normed space ordered by a nontrivial, closed and convex cone with nonempty interior and the decision space is finite-dimensional. We establish that the nonemptiness and compactness for the weakly efficient solution set of a convex vector set-valued optimization problem (with or without cone constraints) can be exactly characterized as those of a family of linearly scalarized convex set-valued optimization problems and the well-posedness of the original problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call