Abstract

Dendrimers are highly branched, open, covalent assemblies of branch cells (monomers) radially attached to a core in successive layers or generations. Major types of dendrimers include polyamidoamine, polypropylenimine, multiple antigen peptide, chiral, and Fréchet-type dendrimers. Their structure and dynamics can be explored by various techniques, such as scattering, spectrometry, and microscopy techniques. Specifically, the scattering techniques include small-angle neutron scattering (SANS), quasi-elastic neutron scattering (QENS), small-angle X-ray scattering (SAXS), and light scattering. Examples of their properties that can be explored by scattering techniques include: inter-molecular structure, intra-molecular cavity, radius-of-gyration (RG), hydrodynamic radius (RH), molecular weight, effective charge number of a single dendrimer molecule, water penetration into the interior of the dendrimers, and the internal dynamics. Of these properties, the hydrodynamic radius and molecular weight may be explored by DLS; the internal dynamics of dendrimers may be studied by QENS; and the others may be explored through SAXS and SANS. During the past several years, SANS and QENS have been used to study the structural properties and internal dynamics of various generations of polyamidoamine dendrimers (PAMAMs). Their potential prospects as anticancer polymer drug carriers are also discussed.

Highlights

  • Dendrimers are a family of nano-sized symmetric three-dimensional macromolecules with a tree-like structure consisting of the core, branches, and terminal groups

  • Dendrimers are more customizable through their synthesis and can be designed to achieve a wide variety of goals

  • Dendrimer research and analysis have progressed tremendously during the past few decades. Due to their highly controllable structures, dendrimers are a promising candidate for medical uses, such as cancer diagnosis and treatment, such as drug delivery methods, and as therapeutic agents

Read more

Summary

Introduction

Dendrimers are a family of nano-sized symmetric three-dimensional macromolecules with a tree-like structure consisting of the core, branches, and terminal groups. Over the past few decades, dendrimers have garnered much attention from researchers in different areas because of their promising practical applications. Multiple terminal functional groups can be synthesized, making a particular dendrimer more polyvalent or more specific. These features make dendrimers well-suited for the carriage of drugs to be delivered either at precise locations (site of a tumor) or over a predetermined amount of time. Dendrimers can be used to emulate certain biological proteins such as insulin and hemoglobin [2]

Basic Features
Comparison with Conventional Synthetic Polymers
Characterization of Dendrimers
Application of Dendrimers as Anticancer Polymer Drug Carriers
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call