Abstract

In this paper, Nb-doped WO3 nanowires were successfully prepared using a low-temperature, hydrothermal method. The physicochemical properties of pristine and Nb-doped WO3 were determined by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy (UV-vis). The photocatalytic properties of those Nb-doped WO3 nanomaterials are evaluated on the basis of their ability to degrade methylene blue (MB) in an aqueous solution under simulated sunlight irradiation. It is demonstrated that the pristine nanowires tend to aggregate, whereas the energy band gap of those nanomaterials narrows as more niobium ions are doped. The photocatalytic experimental results indicated that the Nb-doped WO3 exhibited superior photocatalytic activities to that of the undoped WO3. The Nb-doped WO3 nanowires synthesized with an Nb/W molar ratio of 0.03 possessed the most effective photocatalytic activity among the tested samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.