Abstract

ABSTRACTIn this paper, we characterize robust solutions for uncertain multiobjective optimization problems on the basis of vectorization models by virtue of image space analysis. By introducing corrected image of original uncertain problem or the selected and corrected images of its robust counterpart, an equivalent relation between multiobjective robustness and the separation of two sets in the image space is well established. Moreover, by means of linear (vector/scalar) separation functions, some Lagrangian-type sufficient robust optimality conditions are presented. Especially, under suitable restriction assumptions, we derive Lagrangian-type necessary robust optimality conditions in terms of nonlinear separation functions. These results obtained in this paper extend and improve some existing ones recently. Finally, several examples are given to show the effectiveness of the conclusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.