Abstract

We characterize the local upper Lipschitz property of the stationary point mapping and the Karush–Kuhn–Tucker (KKT) mapping for a nonlinear second-order cone programming problem using the graphical derivative criterion. We demonstrate that the second-order sufficient condition and the strict constraint qualification are sufficient for the local upper Lipschitz property of the stationary point mapping and are both sufficient and necessary for the local upper Lipschitz property of the KKT mapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.