Abstract

The paper is devoted to the study of a new notion of linear suboptimality in constrained mathematical programming. This concept is different from conventional notions of solutions to optimization-related problems, while seems to be natural and significant from the viewpoint of modern variational analysis and applications. In contrast to standard notions, it admits complete characterizations via appropriate constructions of generalized differentiation in nonconvex settings. In this paper we mainly focus on various classes of mathematical programs with equilibrium constraints (MPECs), whose principal role has been well recognized in optimization theory and its applications. Based on robust generalized differential calculus, we derive new results giving pointwise necessary and sufficient conditions for linear suboptimality in general MPECs and its important specifications involving variational and quasivariational inequalities, implicit complementarity problems, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.