Abstract

Molecular characterizations of the microsporidian pathogen Enterocytozoon bieneusi at the ribosomal internal transcribed spacer (ITS) locus have identified nearly 500 genotypes in 11 phylogenetic groups with different host ranges. Among those, one unique group of genotypes, Group 11, is commonly found in dogs. Genetic characterizations of those and many divergent E. bieneusi genotypes at other genetic loci are thus far impossible. In this study, we sequenced 151 E. bieneusi isolates from several ITS genotype groups at the 16S rRNA locus and two new semi-conservative genetic markers (casein kinase 1 (ck1) and spore wall protein 1 (swp1)). Comparison of the near full (~1,200 bp) 16S rRNA sequences showed mostly two to three nucleotide substitutions between Group 1 and Group 2 genotypes, while Group 11 isolates differed from those by 26 (2.2%) nucleotides. Sequence analyses of the ck1 and swp1 loci confirmed the genetic uniqueness of Group 11 genotypes, which produced sequences very divergent from other groups. In contrast, genotypes in Groups 1 and 2 produced similar nucleotide sequences at these genetic loci, and there was discordant placement of ITS genotypes among loci in phylogenetic analyses of sequences. These results suggest that the canine-adapted Group 11 genotypes are genetically divergent from other genotype groups of E. bieneusi, possibly representing a different Enterocytozoon sp. They also indicate that there is no clear genetic differentiation of ITS Groups 1 and 2 at other genetic loci, supporting the conclusion on the lack of strict host specificity in both groups. Data and genetic markers from the study should facilitate population genetic characterizations of E. bieneusi isolates and improve our understanding of the zoonotic potential of E. bieneusi in domestic animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call